skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lemaux, Brian C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. {"Abstract":["This package contains the full data products of the Lyman-alpha Tomography IMACS Survey (LATIS) as presented by Newman et al (2025), "LATIS Data Release: ∼ 4200 Spectra of z ∼ 2−3 Galaxies, Redshifts, and IGM Tomography Maps." These include spectroscopic redshifts, 1D spectra, maps of the targeting and spectroscopic sucess rates, IGM tomography maps, and mock surveys. All products are documented in the README file."]} 
    more » « less
  2. Abstract We investigate the environmental dependence of galaxy properties atz ∼ 2.5 using the LyαTomography IMACS Survey (LATIS), which provides high-resolution three-dimensional maps of intergalactic medium (IGM) overdensity via Lyαforest tomography. Our analysis focuses on a UV-selected spectroscopic sample of 2185 galaxies from LATIS and a complementary set of 1157 galaxies from heterogeneous spectroscopic surveys in the COSMOS field. We compare these data sets to forward-modeled mock catalogs constructed from the IllustrisTNG300-1 simulation, incorporating realistic selection functions to match both LATIS and the literature sample. While the mass-complete simulation predicts strong environmental trends—more massive and quiescent galaxies preferentially occupy overdense regions—we find that such trends are significantly weaker or absent in the observed samples. The LATIS galaxies show no measurable correlation between specific star formation rate (sSFR) and IGM overdensity, a result reproduced by LATIS-like mock catalogs, confirming that UV selection systematically excludes passive and dusty galaxies in dense environments. The literature compilation, despite improved high-mass coverage, remains incomplete and affected by similar biases. We also analyze a mass-complete photometric sample from the COSMOS-Web catalog atz ∼ 2.5 and find no detectable sSFR–environment relation, a null result that our simulations indicate can be explained by photometric redshift uncertainties. In particular, we find no evidence for a reversal of the sSFR–density relation at cosmic noon. These results demonstrate that observed correlations can be heavily shaped by selection effects and caution against inferring physical trends from incomplete spectroscopic samples. Deeper, more representative spectroscopic surveys are needed to robustly characterize environmental effects at this epoch. 
    more » « less
    Free, publicly-accessible full text available November 19, 2026
  3. Abstract We present the data release of the LyαTomography IMACS Survey (LATIS), one of the largest optical spectroscopic surveys of faint high-redshift galaxies. The survey provides 7408 optical spectra of candidatez∼ 2–3 galaxies and QSOs in the Canada–France–Hawaii Telescope Legacy Survey D1, D2 (COSMOS), and D4 fields. TheR∼ 1000 spectra were obtained using the Inamori Magellan Areal Camera and Spectrograph (IMACS) at the Magellan Baade telescope, with typical integrations of 12 hr. From these spectra, we measured 5575 high-confidence spectroscopic redshifts, of which 4176 are atz> 1.7, thereby substantially increasing the number of public spectroscopic redshifts atz≈ 2–3 in COSMOS and the other survey fields. The data release includes Lyαtransmission fluctuations measured in 4.7 × 105pixels, which were used to create 3D maps of the intergalactic medium (IGM) transmission spanning 1.65 deg2andz= 2.2–2.8 at a resolution of 4h−1cMpc. These are the largest such maps to date and provide a novel tracer of large-scale structure in legacy fields. We also provide ancillary data, including mock surveys. The LATIS data will enable a variety of community studies of galaxy evolution, environments, and the IGM around cosmic noon. 
    more » « less
    Free, publicly-accessible full text available November 19, 2026
  4. Abstract We investigate the consistency of intergalactic medium (IGM) tomography and galaxy surveys as tracers of the cosmic web and protoclusters atz ∼ 2.5. We use maps from the LyαTomography IMACS Survey (LATIS), which trace the distributions of Lyman-break galaxies (LBGs) and IGM Lyαabsorption on ≃4h−1cMpc scales within the same large volume. Overall, the joint distribution of IGM absorption and LBG density is well constrained and accurately described by a simple physical model. However, we identify several exceptional locations exhibiting strong IGM absorption indicative of a massive protocluster, yet no coincident overdensity of LBGs. As discussed by Newman et al., whose results we revise using the complete LATIS survey data, these are candidate ultraviolet (UV)-dim protoclusters that may harbor distinct galaxy populations missed by rest-UV spectroscopic surveys. We present follow-up observations targeting one such candidate embedded within Antu, an extended region of IGM absorption atz= 2.685 that contains five IGM-selected protoclusters and has a total mass of 3 × 1015M. Lyαemitters trace the overall structure of Antu but avoid the center of the candidate UV-dim protocluster, which also appears to contain no submillimeter-selected sources. A near-infrared spectroscopic galaxy census is needed to determine whether this large region is dominated by galaxies with reduced or absent star formation activity. This work adds to a growing and puzzling literature on discrepancies among different galaxy and IGM tracers, whose resolution promises to shed light on the early stages of environment-dependent galaxy evolution. 
    more » « less
    Free, publicly-accessible full text available July 14, 2026
  5. Abstract The LyαTomography IMACS Survey (LATIS) has produced large 3D maps of the intergalactic medium (IGM), providing a new window on the cosmic web atz∼ 2.5. A key advantage of Lyαtomography is that it enables the discovery of overdense regions without the need to detect their galaxy members in spectroscopic surveys, circumventing possible selection biases. We use these maps to identify 37 IGM-selected overdensities as regions of strong and spatially coherent Lyαabsorption. Simulations indicate that 85% of these are protoclusters, defined as the progenitors ofz= 0 halos with massMdesc> 1014M, and that nearly all of the rest are protogroups (1013.5<Mdesc/M< 1014). We estimate the masses and space densities of the IGM-selected overdensities and show they are in accordance with mock surveys. We investigate the LATIS counterparts of some previously reported protoclusters, including the proto-supercluster Hyperion. We identify a new component of Hyperion beyond its previously known extent. We show that the Lyαtransmission of the galaxy density peaks within Hyperion is consistent with a simple physical model (the fluctuating Gunn–Peterson approximation), suggesting that active galactic nucleus feedback or other processes have not affected the large-scale gas ionization within this structure as a whole. The LATIS catalog represents an order-of-magnitude increase in the number of IGM-selected protogroups and protoclusters and will enable new investigations of the connections between galaxies and their large-scale environments at cosmic noon. 
    more » « less
    Free, publicly-accessible full text available July 14, 2026
  6. Abstract The connection between galaxies and dark matter halos is often quantified using the stellar mass–halo mass (SMHM) relation. Optical and near-infrared imaging surveys have led to a broadly consistent picture of the evolving SMHM relation based on measurements of galaxy abundances and angular correlation functions. Spectroscopic surveys atz≳ 2 can also constrain the SMHM relation via the galaxy autocorrelation function and through the cross-correlation between galaxies and Lyαabsorption measured in transverse sight lines; however, such studies are very few and have produced some unexpected or inconclusive results. We use ∼3000 spectra ofz∼ 2.5 galaxies from the LyαTomography IMACS Survey (LATIS) to measure the galaxy–galaxy and galaxy–Lyαcorrelation functions in four bins of stellar mass spanning 109.2≲M*/M≲ 1010.5. Parallel analyses of the MultiDarkN-body and ASTRID hydrodynamic cosmological simulations allow us to model the correlation functions, estimate covariance matrices, and infer halo masses. We find that results of the two methods are mutually consistent and broadly accord with standard SMHM relations. This consistency demonstrates that we are able to measure and model Lyαtransmission fluctuationsδFin LATIS accurately. We also show that the galaxy–Lyαcross-correlation, a free by-product of optical spectroscopic galaxy surveys at these redshifts, can constrain halo masses with similar precision to galaxy–galaxy clustering. 
    more » « less
  7. Abstract The discovery and spectroscopic confirmation of Hyperion, a protosupercluster at z ∼ 2.47, provides an unprecedented opportunity to study distant galaxies in the context of their large-scale environment. We carry out deep narrowband imaging of a ≈1° × 1° region around Hyperion and select 157 Ly α emitters (LAEs). The inferred LAE overdensity is δ g ≈ 40 within an effective volume of 30 × 20 × 15 cMpc 3 , consistent with the fact that Hyperion is composed of multiple protoclusters and will evolve into a supercluster with a total mass of M tot ≈ 1.4 × 10 15 M ⊙ at z = 0. The distribution of LAEs closely mirrors that of known spectroscopic members, tracing the protocluster cores and extended filamentary arms connected to them, suggesting that they trace the same large-scale structure. By cross-correlating the LAE positions with H i tomography data, we find weak evidence that LAEs may be less abundant in the highest H i regions, perhaps because Ly α is suppressed in such regions. The Hyperion region hosts a large population of active galactic nuclei (AGNs) ≈ 12 times more abundant than that in the field. The prevalence of AGNs in protocluster regions hints at the possibility that they may be triggered by physical processes that occur more frequently in dense environments, such as galaxy mergers. Our study demonstrates LAEs as reliable markers of the largest cosmic structures. When combined with ongoing and upcoming imaging and spectroscopic surveys, wide-field narrowband imaging has the potential to advance our knowledge in the formation and evolution of cosmic structures and of their galaxy inhabitants. 
    more » « less
  8. ABSTRACT We present size measurements of 78 high-redshift (z ≥ 5.5) galaxy candidates from the Reionization Lensing Cluster Survey (RELICS). These distant galaxies are well resolved due to the gravitational lensing power of foreground galaxy clusters, imaged by the Hubble Space Telescope and the Spitzer Space Telescope. We compute sizes using the forward-modelling code lenstruction and account for magnification using public lens models. The resulting size–magnitude measurements confirm the existence of many small galaxies with effective radii Reff < 200 pc in the early Universe, in agreement with previous studies. In addition, we highlight compact and highly star-forming sources with star formation rate surface densities $$\Sigma _\text{SFR}\gt 10\, \mathrm{M}_\odot \, \text{yr}^{-1}\, \text{kpc}^{-2}$$ as possible Lyman continuum leaking candidates that could be major contributors to the process of reionization. Future spectroscopic follow-up of these compact galaxies (e.g. with the James Webb Space Telescope) will further clarify their role in reionization and the physics of early star formation. 
    more » « less
  9. ABSTRACT Simulations predict that the galaxy populations inhabiting protoclusters may contribute considerably to the total amount of stellar mass growth of galaxies in the early universe. In this study, we test these predictions observationally, using the Taralay protocluster (formerly PCl J1001+0220) at z ∼ 4.57 in the COSMOS field. With the Charting Cluster Construction with VUDS and ORELSE (C3VO) survey, we spectroscopically confirmed 44 galaxies within the adopted redshift range of the protocluster (4.48 < z < 4.64) and incorporate an additional 18 galaxies from ancillary spectroscopic surveys. Using a density mapping technique, we estimate the total mass of Taralay to be ∼1.7 × 1015 M⊙, sufficient to form a massive cluster by the present day. By comparing the star formation rate density (SFRD) within the protocluster (SFRDpc) to that of the coeval field (SFRDfield), we find that SFRDpc surpasses the SFRDfield by Δlog (SFRD/M⊙yr−1 Mpc−3) = 1.08 ± 0.32 (or ∼12 ×). The observed contribution fraction of protoclusters to the cosmic SFRD adopting Taralay as a proxy for typical protoclusters is $$33.5~{{\ \rm per\ cent}}^{+8.0~{{\ \rm per\ cent}}}_{-4.3~{{\ \rm per\ cent}}}$$, a value ∼2σ higher than the predictions from simulations. Taralay contains three peaks that are 5σ above the average density at these redshifts. Their SFRD is ∼0.5 dex higher than the value derived for the overall protocluster. We show that 68 per cent of all star formation in the protocluster takes place within these peaks, and that the innermost regions of the peaks encase $$\sim 50~{{\ \rm per\ cent}}$$ of the total star formation in the protocluster. This study strongly suggests that protoclusters drive stellar mass growth in the early universe and that this growth may proceed in an inside-out manner. 
    more » « less